ON THE THEORY OF ROLLING WAVES

V. V. Pukhnachev UDC 532,516

The problem of rolling waves in a sheet of fluid flowing in a vertical plane [1] is treated on
the basis of the complete Navier —Stokes equations with conditions on the unknown free
boundary. The existence of a one-parameter family of rolling waves, bifurcating from the
Poiseuille flow, is proved.

1. STATEMENT OF THE PROBLEM

It is well known that one of the possible regimes of flow of a fluid sheet in a vertical plane under the
influence of gravity is plane motion with rectilinear trajectories and a plane free surface (this is hereafter
called the fundamental motion). We choose as the units of length, time, velocity, and pressure the quanti-
ties b, b/V, V, and pV?, respectively. Here b is the thickness of the sheet, V = gh?/3v is the average value
of the longitudinal velocity over the thickness of the sheet, p is the density, v is the viscosity of the fluid,
and g is the acceleration due to gravity. In dimensionless variables the velocity V and the pressure P of
the fundamental motion are of the form

<

= [3(1— 23)/2,0] P=0.

The line x5 = 1 corresponds to the "bottom," and the line x; = 0 corresponds to the free boundary.

We shall look for plane motions of the traveling-wave type Whlch bifurcate from the fundamental mo-
tion. We look for velocity and pressure fields in the form v= Vo, p=p/Re, where

v=(u(z, ¥), v(z, ¥)); p=p(z, ¥); T=2, — ct; Y=2,;

c is some parameter (wave velocity); Re = Vb/v is the Reynolds number. By requiring the functions 7
and p to satisfy the Navier—Stokes equation, we arrive at a system of equations in u, v, and p:

1 3
R (A= p) =[5 =9 — ] e By = wne vy (1.1)
1
R;(AU_‘Py)_[—:;‘ (1 _'yz)——c]l)x: uvx+UUy, ux+ Uy = 0.

We seek a solution to the system (1.1) in the domain  ={x, y:|x| < «,n(x) <y < 1}. The line y = 1 corre-
sponds to a rigid wall, on which is specified the no-slip condition

u=v=0 for y=1. (1.2)

The line y =7 (x) is a free boundary. On this line the following conditions are imposed:

{[%(1 — ) —ec+ u] n ——v}lu o= 0; (1.3)
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[(1 - TI,E) (".1/":""‘-\‘_ 3’]);2n:<l’y” ux) fr=mn{(x) :0; (1‘4)

1—p =21 -——1]’2)'4[%——— n'(xzy-~1‘x—31])+1]'211x]Eyzn‘_\.):
= ——Re\’\"fLQ e (1 I | (1.5)

Here W=pV%/0 is the Weber number (a dimensionless parameter, inversely proportional to the coefficient
of surface tension 0),n'=dn/dx, and n" = d%n /dx?. Condition (1.3) is a consequence of the kinematic con-
ditions at the free boundary. Condition (1.4) signifies the absence of any tangential sfress at the free
boundary, and condition (1.5) is the equality of the normal stress and the capillary pressure.

In addition, we require periodicity in x of the solutions to the system (1.1) and the function 7,

ulx—h, y)=u(z, y); vlz—hy)=v(x, y); pla—n,y)=p(z,y); n(z—h)=n(z), (1.6)

and also the condition

h
[, an
0

which fixes the mean depth of the fluid. Condition (1.7) enables us to eliminate the trivial solutions fo the
problem €1.1)-(1.6), in which v=p = 0 and 1 = const. Besides those conditions listed, we should also in-
clude in the conditions of the problem the condition 7 (x) < 1, ensuring the absence of contact between the
free surface and the bottom. However, we shall find below only small solutions of the traveling-wave type
branching from the fundamental solution, and for these solutions the condition indicated will obviously be
satisfied.

The mathematical problem consists of finding a function® and a solution u, v, p to Egs. (1.1) in the
domain @, such that the conditions (1.2)-(1.7) are satisfied. For any values of the parameters Re, W, c,
and h, the problem (1.1)-(1.7) has the trivial solutionn = 0, u=v=p= 0, The purpose of the present paper is
to prove the existence of nontrivial.solutions to this problem.

The nontrivial solutions to the problem (1.1)-(1.7) will be called rolling waves. Approximate theories
of rolling waves, based on various approximate solutions of this problem, have been given by several au-
thors [1-5]. In each of these treatments a one-parameter family (up to a shift in x) of approximate solutions
to the problem (1.1)-(1.7) is constructed. In the present paper we establish the existence of a one-parame-
ter family of solutions to the problem of rolling waves in the exact formulation.

2., AUXILIARY PROBLEM WITH FIXED BOUNDARY

For the investigation of the froblem (1.1)-(1.7) we use a variation of the decomposition method set
forth earlier [6]. We denote by C (2) the subspace of functions ¢(x, y) of Hélder class Cl ® in the do-
main & and periodic in x with penod h(l = 0 is an integer, and 0 <@ < 1). We denote by Cll1+ a(R ty (Cz o
for short) the subspace of h~periodic functions with zero mean in the space CZ+ @ (Rel) (here Re! is the Bt
real axis). For fixed 7 (x) we consider the problem of determining a solution v, p to the system (1.1) in the
domain @, satisfying the conditions (1.2)-(1.4), (1.6), and the additional condition

\ podxdy =0 (2.1)
n(x

D

[

[we call this the auxiliary problem with respect to the initial problem (1.1)-(1.7)1.

LEMMA 2.1, There exists € (0 < €< 1) and Rg, > 0, such that for g : CI%, e+ L e and Re € [0, Rey)
the problem (1.1)-(1.4), (1.6), (2.1) has a solution ve Ch *Q), p,=Ci*Q); this solution is unique in some
ball &7 — |pld*® < const in the space €3 (Q) x ci=(Q).

Hereafter the expressions |.[¢+@ and |. ]"+°" denote the appropriate Holder norms; the notation
=C"*(3) means that every component of the vector v belongs to the space Clzl+ o Q).

We give the highlights of the proof of the lemma. Let us map the domain € onto the strip I = {z,
Zo:]zg] €0, 0< 2, < 1} in the zyz, plane by means of the transformation
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= —y=m@
S EETO)

Because of (1.1) the functions u(zl, Z9) = v(x y) and q(z4, zy) =pg (%, y) in the strip Il satisfy the system of
equations :

Aut-Re(a: yu+i-ya) — ya=}f, y-u=f (2.2)

where ; =(c—3 (1—z22)/ 2, 0); V and A are the gradient and Laplacian with respect to the variables z; and
zy. The conditions (1.2)~(1.4), (1.8), and (2.1) generate the following boundary conditions for the system (2.2):

u=0 for zy—1; (2.3)
Upt(c — 3/2)'=f, for  2,=0; (2.4)

du. du. . S
~&21_.1_E11‘.-_3-r|_f5 for z, =0; (2.5)
Wz =u(z, 22), 9(Et+hyzg)=q(, 2); (2.6)

1
j gdz,dz, = x. 2.7
1]

LI

We do not give here the expressions for the components f 1 f o of the vector f the functions f3, f4, f5, and
the constant ®. The important thing here is only that for CZ"""( ) gE (I ) 1 € I+ ey << 1),
Re=10, Re,] and c=[— N, N}(|N| <) the relations f; ECH‘“(Rel) i ECh( ), fsecite (I )y fo e CEF* (ReM)
hold along with the estimates '

Ifl(a) C ln\(3+a_) (lu‘(Z-l-!z\ + lql(H-OL) _{_cl(] ul(2+tx) (2.8)
VAl i -+ VR + < Canl® 4= Tl + €, (mie-roe,

where Cy and C, depend only on g, Reo, and N (hereafter the symbols Ck, k=1, 2, 3,... denote positive

constants). In addition, 1f the function f 3 corresponds to the solution u, q of the auxiliary problem, in
which 7 is replaced by 3 & €35, M@+ <e,, then

\fs — FET < Coln — e+ (B + (U + C; |2 — WP (is+e 4 fjere), (2.9)
where C3 depends only on 80, Rey, and N, The functional % and the differential expressions f S and f,
treated as operators on 7,1, q, have analogous Lipshitz continuity properties.

The solvability of the problem (2.2)-(2.7) for small 1 is proved by the method of suceessive approxi-
mations. For the starting approximation u®°, q0 we take the solution to the linear problem

Vu“ +Re(a. VuO_LuU Va) —Ag°=0, y- 90 (2.10)
W0 for zp=1; (2.11)
ud s (e —3/2)n == 0 for z, = 0: (2.12)
cz;i il_t—:- —3M=0 for 2z, 6 = 0. (2.13)

S 024 2 3
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--u‘(:l—?alz. 29)=u%(5;,5). @O(5y T 2a)i Y5y S2)s (2.14)

If 3 .

VV gtz dz, == 8. (2.15)
60

Let; be an arbitrary solenoidal vector-valued function, h-periodic in z;, of class 62 (ﬁ), satisfying

condltlons (2.11) and wy = 0, Bwi/B zy + dwy/8z¢ = 0 for z, = 0; q is an arbitrary function, h-periodic in z;, of
class C! (H) and w is the right triangle 0 < zy <h, 0 < z, < 1. We have the inequalities

— {(AZ = Re(@- vir + - va)— vl - wds >
>\l2 N (3”— “\ ~ 3 |di>
N a;h . J =

> (2 - BBGC4C5) Cal — Ca)—— (e Lm

‘(1)

where C4(h) and C5(h) are the constants in the Cornat and Poincare inequalities for the domain w {6]; ||*|
denotes the norm in theSobolev space Wz (@). We choose Rey = 1/2C,C;, which is then fixed. Then for
Re=(0,Re,] the solution to _the problem (2.10)-(2.15) admits an a priori energy estimate. The existence of
an a priori estimate for ﬂuo[luz, makes it poscible to prove the existence and uniqueness of the generalized
solution to this problem (the outline of the proof is similar te that given in [6]). Following the methods of
Solonnikov and Shehadilov [7], we can show that for any 1=Cjs* the generalized solu’cion-ﬁ'6 to the problem
(2.10)-(2.15) belongs to the class C (H) (correspondingly, ¢° < Cy*%{Il)! and that the following estimate
holds:

2+a)

-
fufir

q°|(r[+a)

< Co . (2.16)
The subsequent approximations un™, q®n = 0) to the solution of the problem (2.2)-(2.7) are deter-
mined from linear inhomogeneous problems of the type (2.10)-(2.15). The right-hand sides of the respective
equations and of the boundary conditions are obtained by substituting the functions u?, " into the expres-~
sions for f,..., %. Proceedme from the initial estimate (2.18), the inequalities (2.8) and (2.9), and the
analogous inequalities for ]f ﬂ(“) . ——-‘yj‘ we can prove the convergence of the sequence {uP qn} to
the solution of problem (2.2)-(2.7), if |n|(3“'°‘ =¢ and eel0, gl, where & > 0 is sufficiently small. The
assertion of the solvability of the auxiliary problem can be strengthened. In the formulation of Lemma 2.1
any number less than the critical Reynolds number for Poiseuille flow in a plane channel can be chosen for
Re().

On the basis of Lemma 2 1 there is defined an operator A for Re=I[0, Re,] which associates w1th the
function neCif® for |n*T¥ <& the expression

Am)y=!—po — 210"t Ty — 0 (uy e — 312U D iy=n ()0 (2.17)
where A[n(z)l=Ci® (Re!). We note that the function py differs by a constant from the p component of the

solution to problem (1.1)-(1.7), so that p = py + C. Putting Eq. (2,17) into the as yet unused condition at the
free boundary (1.5) and eliminating the constant C, we arrive at the relation

B(n) = A(n) — A--ReW—(1--1/3)—%2y""=0, (2.18)
where A denotes the mean value of the functlon A 1 (x)] on the interval (0, h). The operator B is defined in

the ball 11 (x)13* ® = & of the space C},"," and goes to the space Ch“m . The operator equation (2.18) is
equivalent to the problem of rolling waves (1.1)-(1.7).

We define the functions v° = (u’, v) and p) by the relations

;0 (r. y) = ;:0 (zlr Z:Z)r pg (‘T y) = 907
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where_ao, ¢’ is a solution to (2.10)-(2.15). It can be seen that \;0, 9% determine the solution of the problem
(1.1)-(1.4), (1.6), and (2.1) linearized in the vicinity of n=0,in which conditions (1.3) and (1.4) are placed

on the unperturbed free boundary 7 = 0. We note that = Cy (), pd = (i), if n=Ci" In addition,
as a consequence of (2,10)-(2.15) and (1.7) the mean value of the functions vg, (x, 0) and pg (x, 0) on the in-
terval (0, h) is equal to zero., Since the mapping 7 ~ ", pg) is linear, it defines a linear operator

L(n) = (— po +205)iy=0, (2.19)

3+o 1+
going fromCp, o to Ch’;y.

3o
LEMMA 2.2, We take the Frechet derivative of the operator B in the ball ]’”(h, 0 ) =€, The Frechet
derivative at zero By is given by

Bo(m) = L (n) + ReW " (2.20)

The definition of the Frechet derivative and the equality B (0) = 0 imply the representation B (1) =
By(™) + F (1), where |F (17)](1 ) = (|n](3 +a)) for|n|(3+a) — 0. We need more precise information about the
operator F, which is contained in the following assertion,

LEMMA 2.3. For.any n,{ < CL such that [7](3%®), 121 3*® =< £ we have the estimate

[F(n) — F(Q)] C+a0C Oy — g@rai(n)+o) 4 [gle+a)), (2.21)

where C; does not depend on 7 and ¢.
The proofs of the Lemmas (2.2) and (2.3) are simple, but intricate, and they are not given here. As a
consequence of (2.20) and the definition of F () the operator equation (2.18) can be rewritten in the form

L(n)-+-ReW—1" - F(n)=0. (2.22)

3. PROPERTIES OF THE LINEAR OPERATOR L

The further course of our examination of the problem of rolling waves consists of the reduction of the
problem to an operator equation of the form 7 = ® (), where ® is an operator which is differentiable in the
ball {n’(3+a) = ¢ in the space C3£'°é; 2(0) = 0 and the Frechet derivative &, is a completely continuous @pera—
tor. In order to carry out the reduction, it is necessary to study the properties of the operator L.

It will prove convenient to extend the operator L to complex-valued functions and treat it as an opera-

tor from comcg+tgz to comcﬁﬂé [comclll“‘a is the space of functions of the form ¢ (x) + i¥ (x), where ¢ and ¥

are real functions of the clasSs C}llfoa 1. ’lgurthermore, n denotes a nonzero integer and 8 = 2n/h.

LEMMA 3.1, The functions exp (infx) are eigenfunctions of the operator L.

For the proof we note that if 7 = exp (inBx), then because of (2.10)-(2.15) the functions v’ and p% are
of the form

»° = ya(y)exp(infz), Py = yn(y)exp(inpz).

Theassertion of the lemma follows from here and the definition (2.19) of the operator L.

Thus, L [exp(infx)] = A exp (inBx). Separating the variables in (2.10)-(2.15), we get a representation
of the eigenvalues A, of L in the form

1 T iRes -
I = — o @ (0) +30.(0) — <& ¢ (0), (3.1)
where ¢ = ¢ (y, Re, &, nB) is the solution to the Orr —Sommerfeld equation

0 — 2kq + k¢ + ikRel(s -+~ 35%2) (@ — k°¢) — 3]=0, (3.2)

707



satisfying the boundary conditions
@(0)=—iks, p(0)=—3ik=ik%, ¢(1) = g(1) = 0, (3.3)

and we have infroduced the notation s = ¢—3/2, k = n8; a dot denotes differentiation with respect to y.

We denote by L the operator L with Re = 0 and we set 6L = L—1L,;. The eigenvalues Ayq of Ly can be
calculated explicitly:

0 c‘m— [25(ch? & + k?) — 3) (3.4

(k = nB). In view of the reality of s, all Apy are purely imaginary. For n -~ = we have the representation
Ang=2is(nf)%signn + O(e—11B). (3.5)

The operator L differs from L; by subordinate terms, which are small along with Re. It can be proved that
for Reel0, Re,] and for any integer n # 0 the estimate

P‘”ﬂ - }"no| < CSBe([n]ﬁJF‘“. (3.6)

holds, where Cg does not depend on Re and s for 0 = Re = Rey and |s| = N (N is any positive number). The
proof of the estimate (3.6) is omitted. It uses standard techniques in the asymptotic expansion of solutions
to ordinary linear differential equations containing a large parameter (see, e.g., Wazow [8]).

LEMMA 3.2, There exists ¥ > 0 such that for Rec[0,Re,], |s| = N the operator By~ 7 has an inverse
(Bo— )" : Cils* — g™

Proof. According to definition (2.20), Bj = Ly + ReW 'd*/dx® + 6. The functions exp (inBx) are eigen-
functions of the operator B(, oL, to which correspond the eigenvalues 7‘n O—ReW’1 (nB)%. This together
with (3.5) implies that if (By— SL)(f) € °Ci* and f&*°™C}}®, then fe& °°m03+°‘. From the definition of
the operators Ly and 6L and the estimates of the solution to (2.10)-(2.15) in the Holder class it follows that
SL(f)e °°mC?‘J'°‘, if 123" This means that the operator D = (B{— &)~ (61— ) is completely continu-
ous in comcfl , and the operator I + D is Fredholm. For I+ D to be invertible, it suffices that there be
no nontrivial solut1ons to the equation (I+ D) (f) = 0. Every solution to this equation of class comc%“’a is
representable in the form Zfpnexp (inBx), where the coefficients f, are subject to the conditions

{An — ReW —I(np)? — »1f,=0.

Choosing v = CsReOW/Z and taking into account (3.4) and (3.6), we find that all f, = 0, if Re=[0,Re,]l. In
view of the identity (BO—GL) I+ D) Bo v, the existence of the operators (I + D) ! and (By—6L)” ! implies
the existence of the operator (Bg~y) !: comC“ﬁ‘ - comcisl"'a. To complete the proof of the lemma it re-
mains to note that the operator (Bj~7Y) ! takes real functions into real functions.

It is clear that (Bg ¥)~! can also be viewed as an operator acting in the space comC'}’fa. Proceeding
from estimates of the Schauder type for the solutions to {2.10)-(2.15), we can establish the complete con-
tinuity of this operator in ©°™MC}L"® (and, consequently, in the real space C%ﬁ? ). We denote by °°™1L, the
subspace of the complex space comLz (0,h) consisting of the functions with zero mean value on the interval
(0, h). The operator (By—7)~! can be extended to a completely continuous operator in comL2 because it has
a complete system of eigenfunctions {exp (inBx)} in comLZ’ to which correspond the eigenvalues

b= Uy — ReW— 1(nf)* — 711, (3.7)

The sigenvalues 4, are complex. However, if i, is a real eigenvalue, then it is atleastof multiplicity two.
The corresponding (real) eigenfunctions are cos (nfx) and sin (nBx). The twofold degeneraey of the real
spectrum of (B(')— 'y)'1 is connected with the invariance of the problem (2.10)-(2.15) with respect to fransla-
tion of x. :

LEMMA 3.3. For sufficiently small Re > 0 there exist ¢ and B such that (BB— v)~! has a twofold
eigenvalue pq =— !
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Proof. As a consequence of (3.7) the eigenvalue t; =— v~! of the operator (B(')--'y)_1 corresponds to
the eigenvalue Ay = ReW 1% of the operator L. Let us show that for small Re the system equations in s

and B

Real’y(Re, s, f) — ReW—12=0; (3.8)
Imi,;(Re, s, B)=0
has a real solution.
Let us denote Ay = A;— Ay, where Ay, is determined by Eq. (3.4), in which we have setk = . From
the definition (3.1)-(3.3) of the eigenvalues of the operator L comes the estimate

|60 << C,Re,

where Cqdoes not depend on Re, s, B for 0 = Re = Rey, [e| = N, 0 = B = B, (B, is an arbitrary positive
number). In addition, from the definition of A, follows the representation Ap =A (Re, s, nB), where A is some
standard (smooth) function. From this and the estimate (3.6) we get the inequality

’6}"1' < CpoRef (3.9)

with Re=[0,Re,l], |5 < N, B > B, where Cy) does not depend on Re, s, and B.

For fixed 8 = 0 let us consider the second of the relations (3.8) as an equation with respect to s. This
equation can be written in the form

_ 3 __ chpshp—p
§ = @6y 2P Y Tmd), (Re, s, ). (3.10)

Taking (3.6) into account, we get an a priori estimate of the solutions to (3.10):

‘S-— 3 )\ C1:Cs (N)Re B (8.11)
O ER D) RS h

where Cyy is some absolute constant. Let us choose some fixed N = 2. Then for 0 = Re = Re; = min(Rey,
1/C44Cg (N)) and any B = 0 we have |s} = 2.

In order to prove the existence of a solution to (3.10), we have to estimate the magnitude of the deriv-
ative 9(Im63;)/3s. It turns out that for any B>0, Re=[0, Re,] and s, |s| = N, the following estimate is
valid:

|25 (Imdh)| < Cra () Re. (3.12)

The proof of this estimate is not complicated but cumbersome and is not given here. In view of (3.11) and
(3.12) there exists Re, (0 < Re, < Rey) such that for Ree=[0, Re,] and any S = 0 Eq. (3.10) has a unique
solution s+ on the interval |s] = 2, This solution is a continuous function of the parameters Re and 8.

We introduce the notation

&(Re, B)=Realh,[Re, s,(Re, p),B] — ReW— I, (3.13)
and rewrite the first equation in (3.8) in the form
&(Re, )=0. (3.14)
The function £ is continuous in the domain 0 = Re = Re,, 8 = 0, and £(0, B) = 0. Equations (3.13), (3.4),

and (3.9) indicate that § — — e« for B — — e and any W > 0, Ree(0,Re,). Thus, for the solvability of Eq.
(3.14) for small Re it is sufficient to establish that ¢(Re, 0) > 0. ‘

For the proof of this fact we employ the representation implied by Eqgs. (3.1)-(3.3):
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Realh,=Rel,, +1(Re,f), (3.15)

where 1=0(Re?) for Re—0,pez[0,8,] and Ay (B) = —(1/8%) #(0) + 38 (0)—(isy/B) #(0). Here the function
@y (y) is a solution to the boundary-value problem (3.1), (3.2) with Re = 0, 5y = sx (0, B) = 3/2 (ch®B + B?)
(3.10), (3.11), while ¥ (y) satisfies the equation

G — 2B+ Bp= 1Bl +357/2) (— g0 —300]

and the boundary conditions % (0) = ¥(0) = ¥(1) = P (1) = 0 (note that the function ¢ assumes purely imaginary
values). Simple computations give the value Ay (0) = 18/5. By virtue of (3.15), (3.13), and the estimate

T = O(Re? we conclude that £ (Re, 0) > 0 for 0 < Re = Reg, where Rey = Re, is sufficiently small. This
proves the solvability of Eq. (3.14) and, hence, of the system (3.8).

Let Re=(0,Re;] and sx, Bx be a solution to the system (3.8). We shall show that for small Re the
identity A = A(Re, sx , nBx*) = ReW’iﬁi cannot be satisfied for any n not equal to 1 or ~1. As a con-
sequence of Eqgs. (3.4), (3.6), and (3.11) we have :

3 (nﬁ )2 Ch2 (nﬁ ) + (nﬁ*)g — A
Im 2, = ch (nfy) sh (:B*) — 1P ‘V ch? E* - ﬁz 1] -8 (RE, n),
where the function 0 is estimated by |6 ] = Cy;Re [n]® with some constant Cy3. I |n] > 1 and Re =< Re, is

sufficiently small, then Im A, # 0, which implies the desired result. From the 1nequa11ty Ay # ReW’lﬁ,.= in
view of (3.7) it follows that ”n L ')"1 for [n] # 1. This means that the number — 'y is no more than a two-
fold eigenvalue of the operator (Bo v)~!. Since it is real, it has precisely multiplicity two. Lemma 3.3 is
proved.

We note that the system (3.8) was considered by Yih [9], who analyzed the stability in the linear ap-
proximation of the flow down an inclined plane. However, in that paper the parameter 8 was assumed given,
while the unknown quantity s was not assumed real. Goncharenko and Urintsev [10] investigated the stability
of this problem in a broad range of the decisive parameters.

4. EXISTENCE OF ROLLING WAVES

THEOREM 4,1, There exists Rex > 0 such that for 0 < Re = Rex the problem (1.1)-(1.7) has a one-
parameter (up to a shift in x) family of solutions,

Proof. Choose Re* such that for Re=(0, Re,] the assertion of Lemma 3.3 is satisfied.

As shown in Sec. 2 the problem of the bifurcation of (1.1)-(1.7) is equivalent to the operator equation
(2.22). This equation can be brought to the form

n=—7v(Bo—v)" () — (B —v) "L F (m). (4.1)

We shall prove the existence of nontrivial solutions to Eq. (4.1). Note that if 7(x) is a solution to this
equation, then M{x + @) will also be a solution for any @ = const. This follows from the invariance of Eqs.
(1.1) and conditions (1.2)-(1.7) under translation with respect to x.

The operators (B{,-‘y)’1 and F depend continuously on the parameters Re, W, s = c¢—3/2,and B =
2r/h. We fix Re= (0,Re,], and Wy > 0 and choose for s and B the solution to Eqgs. (3.8) eorresponding to the
given Re and W;,. The parameter W remains at our disposal. We denote

= —p{By—v)¥ew,; 0=—7v(Bo—y)—Q; T=—(Bo—y)'F,
and write Eq. (4.1) in the form

n=0(n)+8Qn)+T(n). (4.2)
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From the definition of the nonlinear operator T, the inequality (2.21), and the claim of Lemma 3.2 there
follows the estimate

}T(n) . T(C)}(3+C¢) < CMl]]‘«Q(3+OC’)(m1(3+a)+!C’(3+oc)) (4.3)

for any n,fe& Ci"cpm|t+o, [f)e+w e andany W Wy, W,ol,0<WicWo<< Wy <oo(C, is independent of
1, £, and W). The linear operator Q and GQ are completely continuous in C3+°‘ (see Sec. 3). The definition
of 6Q and the properties of the operator Bo imply the inequality

QM+ < Crs [W—W | n#+=) (4.4)

for any Y]t-cho s VVE [VV W, ]

The linear operator Q has the twofold eigenvalue 1 with corresponding eigenfunctions cos fx and
sin Bx. It can be seen that these functions are also eigenfunctions of the adjoint operator. We introduce
into consideration the operator S acting according to the rule

S(m)=0Q(n) — s~ Bl(n, cos Pz) cos Pz--(n, sin pz) sin f)x]

{the symbol (,) denotes the scalar product in L, (0, h)]. According to the generalized Schmidt lemma (see,
e.g., Vainberg and Trenogin [11]) unity is not an eigenvalue of S, Setting

R”lﬁ(n, cos [31):§1, ﬂ—lﬁ(ﬂ , sin B];):g‘.’.a (4.5)
we obtain from (4.2) the equation
(I — 8) (m)=§, cos Pz—+&; sin Pz+-8Q(n) +— T(n). (4.6)

From the boun edness of (I-5)~! and the estimates (4. 3) and (4.4) we conclude that for sufficiently small
€] = (¢2+ &2 92 and |[W~W,| Eq. (4.6) has a unique solution neCi4®, such that [n[3+® — o when £ — 0
and W~ W,.

To determine the possible values of £ = (£, £,) it is necessary to substitute the obtained expression
for 1(x) into Egs. (4.5), which leads to the system of bifurcation equations

Pu(E1s &2y W)=y, ©3(&;, oy W)=E,. (4.7)

It turns out that the system (4.7) can be reduced to a single equation relating only £; and W. For this we
use the invariance of Eq. (4.2) with respect to translations in x. This invariance implies the group property
of Eq. (4.6), represented by the transformation

r—>ga, § — § cosfa — & sin Ba,
&2 — & sinPat&; cospa, 1 — 1.

This means that if Eqs. (4.7) have a nontrivial solution &4, &,, then they have a one-parameter family of
solutions obtained from the given solution by a rotation of the vector § through an arbitrary angle. There-
fore, we can set £ , = 0 at the start and consider instead of (4.7) the equation

¢3(5, 0, W)=E,. {4.8)

For fixed l?[ we thereby single out one of the solutions to Eq. (4.6), for which (7, sin 8x) = 0. The pos-
sibility of reducing the system of bifurcation equations by using the group properties of the branching prob-~
lem was established by Loginov and Trenogin [12].

In Eq. (4.8) it is convenient to consider &, as given and W as unknown. A similar method was used
by Yudovich {13]. The definition of ¢; implies the representation @4 (£, 0, W) = £, {1 + (51, W)], where r
is a smooth function, while r(0, W) = 0, For local solution of Eq. (4.8) with respect to W, it is sufficient
to verify that ry (0, W) = 0. Computation yields

711



_Ref?

V)= — Ot .
w (01 W 0) = Y W W=, 7 ,3

[here uy is the first eigenvalue of (B[',—‘Y)’i, determined by Eq. (3.7), and the positive parameters Re and 8
were previously fixed]. Solvability of Eq, (4.8) means that for any W sufficiently close to Wy, Eq. (4.2) has
a nontrivial solution neCif®, with [n]**® — 0 for W — W,. In view of the arbitrariness of W, > 0 it fol-
lows that for any fixed Ree(0, Re,] and W > 0 up to a shift in x Eq. (4.1) has a one-parameter family of
small solutions (]ﬂ!”a may be taken as the parameter). We have thus established the existence of a one-
parameter farr_l_ily of solutions to the problem (1.1)-(1.7).

In conclusion, we note that the bifurcation problem considered here is a very particular case of the
general problem of rolling waves., Of undisputed interest would be the generalization of Theorem (4.1) to
the case of arbitrary Reynolds number and also the proof of the existence of rolling in an inclined plane,
The main obstacle in the way is the lack at present of any analog to Lemma (3.3) in these cases.

Even more difficult is the problem of the existence of three-dimensional spatially periodic motions
in a fluid layer flowing down an inclined plane. We note that in the case of a vertical plane this problem
has been positively solved by Nepomnyashchii [14] in the long-wavelength approximation.

In the present paper we have not touched upon the question of stability of rolling waves. The stability
of the wave regimes of flow down an inclined plane was studied in the linear approximation by Shkadov [15]
and Nepomnyashchii [16, 17]. The stability of the wave motions of a viscous fluid in the exact formulation
is a completely open question.
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